Minggu, 22 Maret 2009

MENENTUKAN VEKTOR RESULTAN DENGAN VEKTOR KOMPONEN

Sekarang kita memasuki peradaban baru :) teknik menentukan vektor resultan menggunakan vektor komponen selalu digunakan dalam pembelajaran fisika selanjutnya. Dalam pembahasan Gerak Parabola, kita juga akan menggunakan teknik ini. oleh karena itu GuruMuda mengharapkan agar anda dapat menyedot ilmu vektor komponen ini sampai puas, sehingga bekal perjalanan anda cukup dan tidak kelaparan atau pusing2 ketika belajar gerak parabola dan kawan-kawan.

Sekarang rileks dulu….. silahkan ngemil atau ngelamun atau apa aja-lah,,, terserah kamu.

Metode vektor komponen sangat gampang. Serius…. Oke, mulai ya…..

Oya, sebelumnya ijinkanlah gurumuda memperkenalkan kepada anda, apa itu vektor komponen. Tahukah dirimu apa itu vektor komponen ? jika tidak, mari belajar bersama GM (GuruMuda).

Dalam menggambarkan sesuatu, kita selalu menggunakan koordinat x dan y (untuk dua dimensi) atau koordinat xyz (untuk tiga dimensi). Nah, apabila sebuah vektor membentuk sudut terhadap sumbu x positif, pada bidang koordinat xy, maka kita bisa menguraikan vektor tersebut ke dalam komponen sumbu x atau komponen sumbu y. kedua vektor komponen tersebut biasanya saling tegak lurus. Untuk memudahkan pemahaman anda, kita gambarkan sebuah vektor pada bidang koordinat xy, sebagaimana tampak pada gambar di bawah.

Vektor F yang membentuk sudut teta terhadap sumbu x positif, diuraikan menjadi komponen sumbu x, yaitu Fx dan dan komponen pada sumbu y, yakni Fy. Ini merupakan contoh vektor komponen.

Jika vektor F mempunyai nilai/besar, bagaimanakah dengan vektor komponennya, yakni Fx dan Fy ? bagaimana menghitung besar Fx dan Fy ?

Masih ingat-kah rumus cosinus dkk ? lupa…. ;)

Pahami terlebih dahulu rumus sinus, cosinus dan tangen di bawah ini… dipelototin aja kalo mau (pisss…..)

Bagaimana dengan arah F ? untuk menentukan arah vektor resultan, kita menggunakan rumus tangen. Kita menggunakan rumus tangen karena komponen Fx dan Fy diketahui.

Contoh soal 1 :

Tentukanlah komponen-komponen vektor gaya (F) yang besarnya 40 N dan membentuk sudut 60o terhadap sumbu x positif (lihat gambar)

Panduan jawaban :

Yang ditanyakan pada soal di atas adalah komponen vektor F pada sumbu x dan y (Fx dan Fy).

Contoh soal 2 :

Tentukan besar dan arah vektor perpindahan (L), di mana komponen sumbu x-nya = 40 m dan komponen sumbu y-nya = 30 m.

Panduan jawaban :

Sebelum menjawab pertanyaan di atas, terlebih dahulu digambarkan vektor L dan vektor komponennya pada sumbu x dan sumbu y.

Lx = 40 m

Ly = 30 m

Besar vektor perpindahan (L) adalah :

Vektor perpindahan L membentuk sudut 53o terhadap sumbu x positif (berada di kuadran I)

By DEsiS

Menentukan Vektor Resultan dengan Rumus Cosinus

Kita telah menghitung vektor resultan dari dua vektor yang segaris kerja dan dua vektor yang saling tegak lurus. Bagaimana-kah menghitung vektor resultan untuk dua vektor yang tidak segaris kerja dan tidak saling tegak lurus ? wah, mumet ah….

Kita bisa menghitung vektor resultan dari dua vektor yang berarah sembarang dengan menggunakan rumus cosinus, bukan rumus mas cosa

Rumus Cosinus yang digunakan untuk menghitung resultan besar dua vektor yang arahnya sembarang adalah :

Dari mana asal rumus ini ? tiba-tiba nongol di sini ? silahkan bertanya kepada guru matematika anda. Yang pasti cara penurunan rumus ini dijelaskan pada pelajaran matematika SMA (kelas X deh kayanya) mengenai cosinus dan rumus sinus dalam suatu segitiga sembarang.

Agar penasaran atau kebingunganmu berkurang, mari kita pelajari hal ini tapi hanya secara umum.

Misalnya terdapat dua vektor, F1 dan F2 sebagaimana tampak pada gambar di bawah.

Jika besar vektor resultan dihitung dengan rumus cosinus, bagaimana dengan arahnya ? dihitung dengan rumus apakah ? rumus lagi… rumus lagi

Kita menggunakan rumus sinus.

Perhatikan kembali gambar di atas. Arah vektor Resultan dapat dihitung menggunakan sinus pada segitiga OPQ.

Contoh soal :

Dua vektor F1 dan F2 memiliki pangkal berhimpit, di mana besar F1 = 4 N dan besar F2 = 3 N. jika sudut yang dibentuk kedua vektor adalah 60o, berapakah besar dan arah vektor resultan ?

Panduan Jawaban :

Besar vektor resultan kita hitung menggunakan persamaan di atas :

Bagaimana dengan arahnya ?

Arah vektor resultan =


By DEsiS

Menentukan vektor Resultan Pada Segitiga Siku-siku

Apakah hitungan vektor tetap memenuhi hukum berhitung jika perpindahan berlaku untuk dua dimensi ? untuk menjawabnya, perhatikan contoh berikut ini.

Dari kedudukan awalmu, kamu berjalan ke timur sejauh 300 m (vektor A), lalu berbelok ke selatan sejauh 400 meter (vektor B). Apakah perpindahan totalmu 700 m ? atau 100 m ?

Panduan jawaban :

Terlebih dahulu kita tetapkan skala perpindahan, misalnya 100 m = 1 cm. dengan demikian, perpindahan ke timur sejauh 300 m digambar dengan panjang vektor 3 cm, sedangkan perpindahan ke selatan sejauh 400 m digambar 4 cm. lihat gambar di bawah

Untuk menentukan vektor resultan di atas, kita tidak bisa menggunakan hukum berhitung seperti pada dua atau lebih vektor yang segaris, karena dua vektor tersebut tidak segaris kerja. Vektor resultan dapat kita tentukan besarnya menggunakan rumus Pythagoras dalam segitiga siku-siku.

Jadi, besar vektor Resultan = 500 m

Menentukan arah vektor Resultan

Kita sudah mengetahui besar vektor Resultan. Bagaimana dengan arah vektor Resultan tersebut ? untuk menentukan arah vektor Resultan terhadap salah satu vektor komponennya, kita menggunakan rumus Sinus, Cosinus dan Tangen pada segitiga. Perhatikan gambar di bawah ini.

Karena diketahui besar vektor komponen A (300 m) dan besar vektor komponen B (400 m), maka dalam menentukan arah vektor Resultan, kita menggunakan Rumus Tangen.

By DEsiS

Sabtu, 21 Maret 2009

MENENTUKAN VEKTOR RESULTAN DENGAN VEKTOR KOMPONEN

Sekarang kita memasuki peradaban baru :) teknik menentukan vektor resultan menggunakan vektor komponen selalu digunakan dalam pembelajaran fisika selanjutnya. Dalam pembahasan Gerak Parabola, kita juga akan menggunakan teknik ini.

Dalam menggambarkan sesuatu, kita selalu menggunakan koordinat x dan y (untuk dua dimensi) atau koordinat xyz (untuk tiga dimensi). Nah, apabila sebuah vektor membentuk sudut terhadap sumbu x positif, pada bidang koordinat xy, maka kita bisa menguraikan vektor tersebut ke dalam komponen sumbu x atau komponen sumbu y. kedua vektor komponen tersebut biasanya saling tegak lurus. Untuk memudahkan pemahaman anda, kita gambarkan sebuah vektor pada bidang koordinat xy, sebagaimana tampak pada gambar di bawah.


Vektor F yang membentuk sudut teta terhadap sumbu x positif, diuraikan menjadi komponen sumbu x, yaitu Fx dan dan komponen pada sumbu y, yakni Fy. Ini merupakan contoh vektor komponen.

Jika vektor F mempunyai nilai/besar, bagaimanakah dengan vektor komponennya, yakni Fx dan Fy ? bagaimana menghitung besar Fx dan Fy ?

Masih ingat-kah rumus cosinus dkk ? lupa…. ;)

Pahami terlebih dahulu rumus sinus, cosinus dan tangen di bawah ini…

Bagaimana dengan arah F ? untuk menentukan arah vektor resultan, kita menggunakan rumus tangen. Kita menggunakan rumus tangen karena komponen Fx dan Fy diketahui.


Contoh soal 1 :

Tentukanlah komponen-komponen vektor gaya (F) yang besarnya 40 N dan membentuk sudut 60o terhadap sumbu x positif (lihat gambar)


Panduan jawaban :

Yang ditanyakan pada soal di atas adalah komponen vektor F pada sumbu x dan y (Fx dan Fy).


Contoh soal 2 :

Tentukan besar dan arah vektor perpindahan (L), di mana komponen sumbu x-nya = 40 m dan komponen sumbu y-nya = 30 m.

Panduan jawaban :

Sebelum menjawab pertanyaan di atas, terlebih dahulu digambarkan vektor L dan vektor komponennya pada sumbu x dan sumbu y.

Lx = 40 m

Ly = 30 m

Besar vektor perpindahan (L) adalah :

Vektor perpindahan L membentuk sudut 53o terhadap sumbu x positif (berada di kuadran I)
Sekian...

By: Jeffrey

Fungsi Trigonometri dalam vektor

MENENTUKAN VEKTOR RESULTAN DENGAN METODE GRAFIS

Dengan menggunakan metode segitiga dan poligon, kita dapat melukis vektor resultan dari dua buah vektor atau lebih. Dari gambar vektor resultan tersebut, kita dapat menentukan besar dan arah vektor resultan dengan melakukan pengukuran (bukan menghitung). Cara menentukan vektor resultan seperti ini disebut metode grafis. Sekarang, bagaimana menentukan vektor resultan dengan metode grafis ?

Langkah-langkah menentukan besar dan arah vektor resultan dengan metode grafis, adalah sebagai berikut :

  1. tetapkan sumbu X positif sebagai acuan menentukan arah. Ingat, sudut positif diukur dengan arah berlawanan arah jarum jam, sedangkan sudut negatif diukur dengan arah searah jarum jam.
  2. gambar setiap vektor yang akan dijumlahkan (lihat kembali menggambar penjumlahan vektor menggunakan jajaran genjang)
    1. Arah vektor digambar terhadap sumbu x positif dengan menggunakan busur derajat

Jumat, 20 Maret 2009

Kegunaan Fisika Mekanika dalam Kehidupan Sehari-hari

Penerapan Hukum Kekekalan Energi Mekanik pada berbagai jenis gerakan

Mekanika klasik adalah bagian dari illmu fisika mengenai gaya yang bekerja pada benda. Sering dinamakan "mekanika Newton" dari Newton dan hukum gerak Newton. Mekanika klasik dibagi menjadi sub bagian lagi, yaitu Statika {mempelajari benda diam}, Kinematika {mempelajari benda bergerak}, dan dinamika {mempelajari benda yang terpengaruh gaya}. Sedangkan Mekanika itu dari Bahasa Latin yaitu Merchanicus, sedangkan Bahasa Yunani adalah Mechanikos artinya "Seseorang yang ahli di bidang mesin. Jadi Mekanika adalah Jenis ilmu khusus yang mempelajari fungsi dan pelaksanaan mesin, alat atau benda yang sangat penting dalam ilmu fisika terutama untuk ahli saints dan ahli teknik.


Pada pokok bahasan Hukum Kekekalan Energi Mekanik, telah dijelaskan apa dan bagaimana hukum kekekalan energi mekanik. Sekarang, mari kita pelajari aplikasi Hukum Kekekalan Energi Mekanik pada berbagai jenis gerakan benda. Semoga setelah mempelajari materi ini, dirimu dapat memahami secara lebih mendalam konsep dan penerapan Hukum Kekekalan Energi Mekanik. Apabila dirimu belum memahami dengan baik dan benar konsep Hukum Kekekalan Energi Mekanik, sebaiknya segera meluncur ke TKP dan pelajari kembali pembahasannya yang telah GuruMuda publish pada blog ini. Sekarang, tarik napas pendek 1000 kali, karena perang gerilya segera kita mulai…..
Hukum Kekekalan Energi Mekanik pada Gerak Jatuh Bebas
Suatu contoh sederhana dari Hukum Kekekalan Energi Mekanik adalah ketika sebuah benda melakukan Gerak Jatuh Bangun, eh… Gerak Jatuh Bebas (GJB).
Misalnya kita tinjau sebuah batu yang dijatuhkan dari ketinggian tertentu. Pada analisis mengenai Gerak Jatuh Bebas, hambatan udara diabaikan, sehingga pada batu hanya bekerja gaya berat (gaya berat merupakan gaya gravitasi yang bekerja pada benda, di mana arahnya selalu tegak lurus menuju permukaan bumi).
Ketika batu berada pada ketinggian tertentu dari permukaan tanah dan batu masih dalam keadaan diam, batu tersebut memiliki Energi Potensial sebesar EP = mgh. m adalah massa batu, g adalah percepatan gravitasi dan h adalah kedudukan batu dari permukaan tanah (kita gunakan tanah sebagai titik acuan). ketika berada di atas permukaan tanah sejauh h (h = high = tinggi), Energi Kinetik (EK) batu = 0. mengapa nol ? batu masih dalam keadaan diam, sehingga kecepatannya 0. EK = ½ mv2, karena v = 0 maka EK juga bernilai nol alias tidak ada Energi Kinetik. Total Energi Mekanik = Energi Potensial.
EM = EP + EK
EM = EP + 0
EM = EP
Sambil lihat gambar di bawah ya….















Apabila batu kita lepaskan, batu akan jatuh ke bawah akibat gaya tarik gravitasi yang bekerja pada batu tersebut. Semakin ke bawah, EP batu semakin berkurang karena kedudukan batu semakin dekat dengan permukaan tanah (h makin kecil). Ketika batu bergerak ke bawah, Energi Kinetik batu bertambah. Ketika bergerak, batu mempunyai kecepatan. Karena besar percepatan gravitasi tetap (g = 9,8 m/s2), kecepatan batu bertambah secara teratur. Makin lama makin cepat. Akibatnya Energi Kinetik batu juga semakin besar. Nah, Energi Potensial batu malah semakin kecil karena semakin ke bawah ketinggian batu makin berkurang. Jadi sejak batu dijatuhkan, EP batu berkurang dan EK batu bertambah. Jumlah total Energi Mekanik (Energi Kinetik + Energi Potensial = Energi Mekanik) bernilai tetap alias kekal bin tidak berubah. Yang terjadi hanya perubahan Energi Potensial menjadi Energi Kinetik.
Ketika batu mencapai setengah dari jarak tempuh total, besar EP = EK. Jadi pada posisi ini, setengah dari Energi Mekanik = EP dan setengah dari Energi Mekanik = EK. Ketika batu mencium tanah, batu, pasir dan debu dengan kecepatan tertentu, EP batu lenyap tak berbekas karena h = 0, sedangkan EK bernilai maksimum. Pada posisi ini, total Energi Mekanik = Energi Kinetik. Gampang aja…. dirimu bisa menjelaskan dengan mudah apabila telah memahami konsep Gerak Jatuh Bebas, Energi Kinetik, Energi potensial dan Hukum Kekekalan Energi Mekanik. Semua materi itu sudah ada di blog ini…. jika belum memahami konsep-konsep tersebut dengan baik dan benar, sangat disarankan agar dipelajari kembali hingga benar-benar ngerti….

Hukum Kekekalan Energi Mekanik pada Gerak parabola

Hukum kekekalan energi mekanik juga berlaku ketika benda melakukan gerakan parabola.











Ketika benda hendak bergerak (benda masih diam), Energi Mekanik yang dimiliki benda sama dengan nol. Ketika diberikan kecepatan awal sehingga benda melakukan gerakan parabola, EK bernilai maksimum (kecepatan benda besar) sedangakn EP bernilai minimum (jarak vertikal alias h kecil). Semakin ke atas, kecepatan benda makin berkurang sehingga EK makin kecil, tetapi EP makin besar karena kedudukan benda makin tinggi dari permukaan tanah. Ketika mencapai titik tertinggi, EP bernilai maksimum (h maksimum), sedangkan EK bernilai minimum (hanya ada komponen kecepatan pada arah vertikal).Ketika kembali ke permukaan tanah, EP makin berkurang sedangkan EK makin besar dan EK bernilai maksimum ketika benda menyentuh tanah. Jumlah energi mekanik selama benda bergerak bernilai tetap, hanya selama gerakan terjadi perubahan energi kinetik menjadi energi potensial (ketika benda bergerak ke atas) dan sebaliknya ketika benda bergerak ke bawah terjadi perubahan energi potensial menjadi energi kinetik.

Hukum Kekekalan Energi Mekanik pada Gerak Harmonik Sederhana

Terdapat dua jenis gerakan yang merupakan Gerak Harmonik Sederhana, yakni ayunan sederhana dan getaran pegas. Jika dirimu belum paham apa itu Gerak Harmonik Sederhana, silahkan pelajari materi Gerak Harmonik Sederhana yang telah dimuat pada blog ini. Silahkan meluncur ke TKP…..
Sekarang mari kita tinjau Hukum Kekekalan Energi Mekanik pada ayunan sederhana.














Untuk menggerakan benda yang diikatkan pada ujung tali, benda tersebut kita tarik ke kanan hingga mencapai titik A. Ketika benda belum dilepaskan (benda masih diam), Energi Potensial benda bernilai maksimum, sedangkan EK = 0 (EK = 0 karena benda diam ). Pada posisi ini, EM = EP. Ingat bahwa pada benda bekerja gaya berat w = mg. Karena benda diikatkan pada tali, maka ketika benda dilepaskan, gaya gravitasi sebesar w = mg cos teta menggerakan benda menuju posisi setimbang (titik B). Ketika benda bergerak dari titik A, EP menjadi berkurang karena h makin kecil. Sebaliknya EK benda bertambah karena benda telah bergerak. Pada saat benda mencapai posisi B, kecepatan benda bernilai maksimum, sehingga pada titik B Energi Kinetik menjadi bernilai maksimum sedangkan EP bernilai minimum. Karena pada titik B kecepatan benda maksimum, maka benda bergerak terus ke titik C. Semakin mendekati titik C, kecepatan benda makin berkurang sedangkan h makin besar. Kecepatan berkurang akibat adanya gaya berat benda sebesar w = mg cos teta yang menarik benda kembali ke posisi setimbangnya di titik B. Ketika tepat berada di titik C, benda berhenti sesaat sehingga v = 0. karena v = 0 maka EK = 0. pada posisi ini, EP bernilai maksimum karena h bernilai maksimum. EM pada titik C = EP. Akibat tarika gaya berat sebesar w = mg cos teta, maka benda bergerak kembali menuju titik B. Semakin mendekati titik B, kecepatan gerak benda makin besar, karenanya EK semakin bertambah dan bernilai maksimum pada saat benda tepat berada pada titik B. Semikian seterusnya, selalu terjadi perubahan antara EK dan EP. Total Energi Mekanik bernilai tetap (EM =EP + EK).
By : Jeffrey

Senin, 16 Maret 2009

Kenalan!

Agnes Kristiani _ 08210028
Desi Haryanto _ 08210009
Desis imamuddin hakim _ 08210013
Jeffrey _ 08210001
Mohammad Ashri _ 08210016